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Learning Deep Representations
for Place Recognition in SLAM
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Abstract—Closing loops for pose graph optimization, by recog-
nising previously mapped places is an essential step for perform-
ing Simultaneous Localisation and Mapping. The traditional ap-
proaches for recognising known places follow a feature-based bag-
of-words model while discarding certain geometric and structural
information. In order to improve real-time query performance,
we take a slightly different approach by learning low-dimensional
global representation vectors using a deconvolution net. Our 12-
layer deconvolution net encodes and decodes an image to itself
and in the process learns a representation of the image in a
reduced feature space, which is then used for comparing one
image with another and thereby identifying loop closures. Our
model is trained on the first five sequences of the KITTI Visual
Odometry dataset and evaluated on sequences 5, 6, 7 & 8. Finally,
we compare our results on sequence 5 against two of the most
commonly used approaches for detecting loop closures in SLAM.

I. INTRODUCTION

In the context of robot navigation with vision, the task
of Simultaneous Localization And Mapping (SLAM) is an
important task. The entire SLAM process relies on recognizing
the places the robot has already visited to achieve visual loop
closure detection. Though SLAM is considered as a chicken-
and-egg problem where simultaneous determination of location
of the robot and making the map of the environment has to
be done, visual cues help in determining the end of a loop
travelled by the robot better than GPS location data or in
places where GPS data is unavailable or highly erroneous. With
further information from visual odometry or IMU (Inertial
Measurement Unit) data or both, mapping of the environment
under the scope of camera or LiDAR can be done with consid-
erable accuracy. The task of visual loop closure detection can
be easily described as reporting a high score when the robot
comes back to the position that it started from by recognizing
the scene. The main challenges in this approach are change in
pose of the camera, change in illumination, change in macro
level features like parked cars, movable objects etc. Traditional
bag-of-words based approach works by representing the image
as vector of visual patches, corners etc. but that is likely to fail
when the loop initiation images change significantly. Hence
a representation that captures the contextual essence of the
images is necessary to detect the loop closure successfully,
in general place recognition mechanism independent of minor
changes in the environment is in demand. In this regard deep
unsupervised learning models allow us to devise a method to
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Fig. 1. Here the image frame in red border denotes the query image frame
and the possible loop closure candidates are shown in green border. Above is
shown a single row from the confusion matrix generated from our method.
The blue regions show the best matches obtained by our approach.

extract a much lower dimensional vector representation of an
image that can ensure near accurate reconstruction. In this
work, we have proposed a deep autoencoder based network
to accomplish the task of place recognition. It is to be noted
that in this context, we have used the term ‘place recognition’
for recognising whether we have previously visited a place or
not, and not determining what kind of place it is.

II. RELATED WORK

In the context of loop closure detection, the major tasks are
representing the frames with the help of visual descriptors and
subsequently judging the similarity between the frames based
on the descriptors. Various approaches have been followed by
the researchers. Some of the major approaches are discussed
as follows.

A. BoW based approaches and the FABMAP model
The BoW(Bag-of-words) approach was first successfully

applied to image classification and retrieval[11]. Here, a fixed
size vocabulary is used as a vector quantizer to classify
descriptors in an image frame. While querying the database
with an image, the extracted features of the query image are
converted into a vector of classes present in it. It is then
used to compare the query image with an image from the
database. The FABMAP model[12] for example considers a
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sequence of non-overlapping frames and checks if each frame
belongs to an already visited place. This task is achieved by
comparing the probability of a binary BoW vector generated
from either a previously seen place or by a previously unseen
place (represented by a background model).

One significant issue with this approach is that whenever
we see a new image frame which is very similar to two (or
more) frames present in the database, the matching images
attract half (or less) of the probability mass and thus the
threshold for being recognized might not be achieved. Another
drawback of such methods is that in order to deal with
computational expenses, full feature based methods in general
discard underlying structure and geometry between frames.
This results in perceptual aliasing which is a very common
issue with place recognition methods.

B. SeqSLAM
In order to deal with the issue of perceptual aliasing as

prevalent in FABMAP, methods like SeqSLAM[14] perform
correlation-based matching on short sequences of images in-
stead of depending directly on individual image frames. Thus,
instead of finding the single most-likely location, given a query
image, this method looks for the best candidate matching
location within every local navigation sequence. Localisation
is hence achieved by recognizing coherent sequences of such
“local best matches.” One significant step of the SeqSLAM al-
gorithm is that the distance matrix is locally contrast enhanced
which helps to find best matches in every local neighborhood
of the trajectory instead of only one global best match. The
main advantage of SeqSLAM method is its robustness to
weather change and or luminosity change of the path.

C. Voting and Nearest Neighbour based approaches
Voting based methods([7], [8], [9]) perform a nearest neigh-

bour search on the image descriptor space to identify po-
tential matches. It is quite similar to the original bag of
words approach but sometime image descriptors like SIFT[17],
BRISK[18] or FREAK[19] are also used to form the descriptor
vector. The selection of images that are to searched for a
match are chosen in groups along the trajectory when applied
to loop closure problems, rather searching all the images
till the next loop closure point. In case of binary image
descriptors, however it becomes difficult to perform a kNN
(k-nearest neighbour) search efficiently search mainly due to
high dimensionality. Methods described in [10] and [8] first
project the high-dimensional feature descriptors into a low-
dimensional space for fast and accurate nearest neighbour
search. By means of voting similar images are identified and
loop closure is detected by thresholding on the similarity value.

D. Deep Learning approaches
1) Convolutional Neural Network: Recently, Convolutional

neural network based approaches have been developed for
loop closure detection. Chen et al.[15] used the Overfeat
network[16] trained on the ImageNet dataset to extract features
from the image frames. One significant advantage of such

method is that using a sequence of convolution and pooling
operations, it is possible to obtain dense representations of
the images and perform search on the low dimensional vector
space.

However, in this approach the network was pre-trained on
the ImageNet dataset[24] and thus is optimized for object
recognition, which means features generated by the CNN
correspond to semantics of the image rather than structure.
In our case, however, we shall require features that are used
for comparing structural similarity(the exact same scene with
some translational and rotational invariance) rather than se-
mantic similarity(whether the two images are of similar type
or class).

2) Denoising Autoencoders: Very recently, denoising au-
toencoders have been used for localization tasks[26]. Shantia
et al. used a denoising autoencoder with fully connected layers
to extract features from an image and use the feature vectors
for comparing structural similarity of two images.

Our approach is somewhat similar to this approach since we
also treat the feature extraction as an unsupervised learning
task unlike Chen et al. However, the reasons for choosing a
deconvolution net in stead of a fully-connected autoencoder
are: a) weight sharing (as done in convolution layers) extracts
more meaningful and significant features when dealing with
raw image data. b) The features extracted by our model are
six layers deep and hence are more abstract compared to the
features extracted by their 1 layer deep denoising autoencoder.
c) More importantly, pooling operations in the encoder of the
deconvolution net introduce some translational invariance in
the features extracted which is a very essential characteristic
for detecting loop closures.

It may be noted that it is very difficult to devise the most
suitable descriptors for loop closure detection, since it may
vary depending on the scenes under consideration. It has
motivated us to rely on deep learning that can automatically
extract the features that can be utilized in optimal place
recognition. In section III proposed methodology is elaborated
and result is presented in section IV

III. PROPOSED METHODOLOGY

In this work we propose an autoencoder based deep learning
network that extracts a lower dimensional vector representation
of an image. With an autoencoder trained to encode and decode
an image, the task of loop detection reduces to finding the
distance between the encoded vectors of the query image and
the input image. Whenever the distance falls below a certain
threshold a loop closure can be reported. The value of the
threshold can be either learned or tuned based on previous
experience about the alteration limits of the environment. The
reconstruction process in this case uses the concept of switch
matrix which holds the position of the pixel selected during
a pooling layer of the encoder so that proper mapping can
be done during decoding. The methodology is detailed in the
subsequent subsections.

Some of the important aspects of our research are:
• Our 12 layer architecture with LCA layers reduces the

input image of 96x336 i.e. 32256 pixels to only 200
dimensional feature vectors
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• The quality of reconstruction from the decoder part of
the network ensures that the 200 features extracted by
our method capture important structural properties of the
image.

• While detecting loop closures, it is often encountered
that the objects of a place we had previously visited,
have shifted by a few metres (or pixels) by the time
we are arriving back at that place. Also, the camera
poses of the two time instants are likely to be different.
Hence, it is important that the features extracted from
the image are translationally invariant to some extent,
which is guaranteed by the pooling layers of the encoder
network.

• Compared to traditional approaches of computing ex-
pensive features from an image, our deep features are
generated by a series of dot products, non-linearities and
pooling operations, which boosts real time performance
significantly.

A. Architecture
At the heart of the proposed architecture lies a decon-

volution net. It is further modified by adding a layer of
locally connected autoencoders to map an image frame into
a representation vector of n dimensions. The higher the value
of n, the greater is the capability of the vector to encode unique
macro level features of the scene in each of its elements. The
choice of optimal size for the vector is subjected to further
research. The value of n is empirically chosen as 200 in
this work. We discuss the architecture in the following two
subsections.

1) Deconvolution net: Deep autoencoders were initially
studied by Hinton et al.[1] for reducing the dimensionality
of raw input data with neural networks. This approach was
later extended for image[2] and document retrieval[3] tasks.
But when working with images, fully connected autoencoders
ignore local 2D image structure and hence suffer from a
redundancy in learning the parameters. The visual field of the
features are made to span the entire input thus destroying local
structural information. In this case enforcing local connectivity
and weight sharing[4] not only scales well for realistic image
sizes, but also removes redundancies in the input to model
discriminative representations. The architecture we used here
is essentially a 12 layer deep deconvolution network with only
the middle layer as a layer of locally connected autoencoders.
The first six layers are for encoding and the last six layers
are for reconstructing the input which structurally is the
mirror image of the encoding network. The output of the 6th

layer(the layer of locally connected autoencoders) are used
as representations for the image frames.Here, the stride of
both convolution and pooling layers defines the number of
pixels the kernel shifts. The pad defines the number of extra
zero value pixels padded on the boundary after convolution or
pooling. In our, case we have chosen the zero-pad as 1, stride
for convolution as 1 and kernels of dimensions 3x3, similar
to the architecture of Noh et al.[6] Figure 2 shows the entire
architecture and the condition of an input image at each layer
of the encoding and decoding process.

In order to aid reconstruction, we use the ‘switch matrix’
method ([5] & [6]) in the decoding layers.

As deep learning involves huge amount of matrix compu-
tation so to speed up the process without significant loss of
accuracy pooling technique is used. The image size to next
convolution layer is diminished by selecting one pixel value
of the next layer input, from a patch of the output image of the
previous convolution layer. Max-pooling selects the pixel value
which is maximum within the patch. During max-pooling,
switches store the locations of the cells from which the values
are selected and this information is used for reconstructing
the original image during unpooling in the decoding layers.
Without such an approach a random number is used to put
back the pixel in proper place thus unwillingly increasing the
reconstruction error even when the final representation was
good enough. It is to be noted that switch matrix is a transient
by-product during the pooling stage of an image which can
only be used during the unpooling of that image during an
epoch, thus though the switch matrix holds some of the
information during encoding, the information is unusable for
a unified representation learning. Table 1 shows the complete
architecture in tabular form.

Layer kernel size stride pad Output dim.
Input - - - 1x96x336

Conv-1 3x3 1 1 2x96x336
Conv-2 3x3 1 1 3x96x336
Pool-1 2x2 2 0 3x48x168
Conv-3 3x3 1 1 5x48x168
Conv-4 3x3 1 1 8x48x168
Pool-2 2x2 2 0 8x24x84
Conv-5 3x3 1 1 5x24x84
Pool-3 2x2 2 0 5x12x42

LCA-enc - - - 5x40
LCA-dec - - - 5x12x42
Unpool-1 2x2 2 0 5x24x84
Deconv-1 3x3 1 1 8x24x84
Unpool-2 2x2 2 0 8x48x168
Deconv-2 3x3 1 1 5x48x168
Deconv-3 3x3 1 1 3x48x168
Unpool-3 2x2 2 0 3x96x336
Deconv-4 3x3 1 1 2x96x336
Deconv-5 3x3 1 1 1x96x336

TABLE I. THE FIRST HALF OF THE NETWORK CONSISTS OF
CONVOLUTION (CONV) AND POOL LAYERS, FOLLOWED BY ENCODING

AND DECODING (DONE BY THE LOCALLY CONNECTED AUTOENCODERS)
AND FINALLY A NUMBER OF DECONVOLUTION (DECONV) AND

UNPOOLING LAYERS.

2) Locally Connected Autoencoders: The feature maps at
the output of the 6th layer are passed through a layer of
locally connected autoencoders (LCA) to learn a further lower
dimensional representation. An LCA is a fully connected 2
layer feedforward neural network where the number of input
neurons is equal to the number of output neurons and the the
number of hidden neurons is equal to the dimension of the
autoencoder, which in this case is 40. Each of the 5 feature
maps are passed through an autoencoder and projected into
a representation vector of 40 dimensions. All such represen-
tations are stacked on top of one another to form the 200
dimensional representation of the image frame. Using local
connections in stead of using a fully connected layer not only
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Fig. 2. The overall architecture (left) along with the image output at each layer (right) after convolution and deconvolution layers, the switch matrix generated
for each image during encoding pooling layers are used up in unpooling layers during decoding as shown above
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helps capture distinguishing features from each feature map
separately but also reduces the number of parameters to be
learnt.

B. Training Methodology
Training and testing was done on the KITTI Odometry

dataset[23]. For training, we used Sequences 0 - 4 with dataset
augmentation (roughly 100,000 images), for validation we used
sequences 9 and 10, and sequences 5 - 8 for testing. Total
time taken to train the network (including both phases) was
approximately 4 days on an NVidia Quadro M5000 GPU with
16GB memory. The training, as mentioned, was done in two
phases – a pre-training phase followed by a global fine-tuning
phase, which is discussed as follows.

1) Greedy Layer-wise Unsupervised Pretraining: The
greedy unsupervised pretraining proceeds in a layerwise fash-
ion. Keeping in mind the difficulty of jointly training a deep
neural network architecture with respect to a global objective,
at this stage, each layer is pretrained in an unsupervised fashion
by taking the output of the previous layer and producing a
new representation as output. This phase is called layer-wise
because only the parameters of one layer are updated at a time
keeping the others fixed. The first layer of the autoencoder
architecture takes an image as input and tries to reconstruct
the same. The next layer then takes the activations of the first
layer as input and tries to reconstruct the same. In this way
pretraining proceeds in a bottom-up fashion from the first layer
to the last.

Parameters learnt this way serve as a good initialisation for
each layer of the network. In the next stage, the network is
then fine tuned and the parameters are updated with respect to
some global criteria.

2) Global Fine-tuning: Unsupervised pretraining has been
extensively used where the fine tuning phase is supervised.
However it has been shown, that for autoencoder networks,
unsupervised pretraining improves test accuracy significantly
when the fine tuning phase is also unsupervised[1]. Similar to
their work, our global fine tuning phase is also unsupervised.
Erhan et al.[20] studied why the unsupervised pretraining
produces a good initialisation, by considering the trajectories
of the neural network during the supervised fine-tuning phase.
After the full autoencoder network is trained with respect to
some global objective, the output of the LCA (locally con-
nected autoencoder) layer are used as the learnt representations
of the images in the dataset.

IV. RESULTS AND ANALYSIS

A. Confusion matrices
For each of the test sequences 5, 6, 7 & 8, the generated

confusion matrices are shown in Figs 4.1, 4.2, 4.3 & 4.4
respectively. A confusion matrix, M shows euclidean distances
between all possible representation pairs in a drive sequence,
i.e. M[i, j] denotes the euclidean distance between the repre-
sentations of ith image and jth image. Thus M[i, j] = M[j,
i] and M[i, i] = 0 for each of the confusion matrices shown
below

Fig. 3. shows confusion matrices for sequences 5, 6, 7 & 8 respectively.
The values are darkest along the diagonals in each sub figure, which indicates
M[i,i] = 0. In this case, darker the value, lesser the euclidean distance between
two vectors.

B. Need for local connections

Using locally connected autoencoders instead of one sin-
gle fully connected autoencoder also helps reconstruct eacg
feature map more accurately. The primary object of the local
connection however is to map each feature map of dimension
(12x42) to 40 features that is to reduce the dimensionality
of the representation vector from 2520 (5x12x42) to 200
(5x40).Thus, without the LCA (encoding and decoding) layers,
the network is able to achieve much less reconstruction error
on the test set as the dimensionality reduction is avoided at the
LCA layer thus loosing less amount of information. However,
the main aim of our network is to learn a lower dimensional
representation of the input image. Hence with the introduction
of the LCA layers, even though reconstruction error increases
to some extent, useful low dimensional representations can be
learnt which can be used to identify loop closures. We hence
show the reconstructed outputs of an image sample during test
time using the network described in section III-A1 and the
corresponding network without the LCA layers.

Next we show the corresponding confusion matrices that are
generated from the representations learnt by the network with
LCA layers and the network without LCA layers in Figs 5.1
and 5.2 respectively. Even though the result for the network
with LCA layers is relatively more noisy compared to the
results obtained from the network without the LCA layers, it is
to be kept in mind that in the former case the representations
are 200 dimensional feature vectors whereas in the latter case
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Fig. 4. shows the original image vs reconstructed images. Reconstruction
without the LCA layer is much better compared to the reconstruction from
the network with LCA layer.

those are of 2520 dimensions.

Fig. 5. Confusion matrices of Karlsruhe drive sequence
‘2010 03 09 drive 0081’ obtained from the network with and without LCA
layers. It is to be noted that the confusion matrix in the former case is
obtained from 200 features whereas the one in the latter case is obtinaed
from 2520 features.

C. Thresholding and identification of loops
This threshold can be learnt or manually tuned. In our case,

however we have manually chosen the threshold and reported
the variation of precision with recall on the KITTI odometry
dataset sequence 5. We have also evaluated and compared our
result against that of FabMap [12] and SeqSLAM [14], (both
codes being available as opensource) on the same sequence.
The ground truth in confusion matrix format was generated
from trajectory format by checking for overlapping image
sequences in a small geographic radius of 3 meters. The fig 6

Fig. 6. The figure describes all the confusion matrices from the experiments
after a threshold of 5 in intensity scale is applied, (a)top left is the ground
truth, (b)top right is the output from our method (c)bottom left is the output
from OpenSeqSlam and (d)bottom right is output from OpenFabmap.

shows all the matrices after applying a low-pass threshold of 5
on the intensity scale of 0 to 255 and then inverting the same.
It is to be mentioned that our system processed approximately
150 frames per second. It can be observed that only our method
was successful in detecting when the vehicle was waiting at a
turn with the camera running thus producing the box on the
diagonal in the lower right corner.

V. CONCLUSION AND FUTURE WORK

Place recognition is not only helpful in loop detection in
SLAM but also for content based image retrieval when the
subject of the image is a natural scene. With our research,
we have tried to show that learnt deep representations can
capture essential structural properties of an image and thus
can be used for place recognition tasks in real time. The bag
of word approach used in FABMAP though straight forward
in concept, suffers from perceptual aliasing. The seqSLAM
approach is better than feature based approach and is robust
to seasonal and temporal change of the path. The CNN based
approach takes context into account by learning features from
it and representing a scene by a vector, but the network was
trained for supervised learning tasks. Denoising autoencoders
have been used for unsupervised extraction of features but do
not take advantage of weight sharing as is done in a CNN.

In our approach, we tried to combine the best of both
the deep learning approaches (weight sharing in CNNs and
unsupervised feature learning in DAs) in a deconvolution net.
The advantage of this approach is that vectors generated for
two frames of the same scene which differ geometrically but
are similar contextually and by content, are quite close to each
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other. Thus the approach works in general place recognition
tasks also and holds the promise to be extended to context and
content based image matching problems.

In this approach, we have performed linear search while
querying the database with a query image. This method can
be further improved by doing a hierarchical clustering on the
representation vectors to build a hierarchical tree like structure
of the representation vectors which would decrease the run
time complexity of the query from linear time to logarithmic
time, hence further boosting real time performance.

REFERENCES

[1] G.E.Hinton and R.R.Salakhutdinov, Reducing the Dimensionality of Data
with Neural Networks Science 313.5786 (2006): 504-507.

[2] A Krizhevsky, GE Hinton, Using very deep autoencoders for content-
based image retrieval. ESANN, 2011

[3] Hinton, Geoffrey, and Ruslan Salakhutdinov. ”Discovering binary codes
for documents by learning deep generative models.” Topics in Cognitive
Science 3.1 (2011): 74-91.

[4] Masci, Jonathan, et al. ”Stacked convolutional auto-encoders for hier-
archical feature extraction.” Artificial Neural Networks and Machine
LearningICANN 2011. Springer Berlin Heidelberg, 2011. 52-59.

[5] Zeiler, Matthew D., et al. ”Deconvolutional networks.” Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010.

[6] Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. ”Learning decon-
volution network for semantic segmentation.” Proceedings of the IEEE
International Conference on Computer Vision. 2015.

[7] Jegou, Herve, Matthijs Douze, and Cordelia Schmid. ”Hamming em-
bedding and weak geometric consistency for large scale image search.”
Computer VisionECCV 2008. Springer Berlin Heidelberg, 2008. 304-
317.

[8] Lynen, Simon, et al. ”Placeless place-recognition.” 3D Vision (3DV),
2014 2nd International Conference on. Vol. 1. IEEE, 2014.

[9] Stewnius, Henrik, Steinar H. Gunderson, and Julien Pilet. ”Size mat-
ters: exhaustive geometric verification for image retrieval” Computer
VisionECCV 2012. Springer Berlin Heidelberg, 2012. 674-687.

[10] Bosse, Michael, and Robert Zlot. ”Keypoint design and evaluation for
place recognition in 2D lidar maps.” Robotics and Autonomous Systems
57.12 (2009): 1211-1224.

[11] Sivic, Josef, and Andrew Zisserman. ”Video Google: A text retrieval
approach to object matching in videos.” Computer Vision, 2003. Pro-
ceedings. Ninth IEEE International Conference on. IEEE, 2003.

[12] Cummins, Mark, and Paul Newman. ”FAB-MAP: Probabilistic localiza-
tion and mapping in the space of appearance.” The International Journal
of Robotics Research 27.6 (2008): 647-665.

[13] Arai, Kohei, and Ali Ridho Barakbah. ”Hierarchical K-means: an
algorithm for centroids initialization for K-means.” Reports of the Faculty
of Science and Engineering 36.1 (2007): 25-31.

[14] Milford, Michael J., and Gordon F. Wyeth. ”SeqSLAM: Visual route-
based navigation for sunny summer days and stormy winter nights.”
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012.

[15] Chen, Zetao, et al. ”Convolutional neural network-based place recogni-
tion.” arXiv preprint arXiv:1411.1509 (2014).

[16] Sermanet, Pierre, et al. ”Overfeat: Integrated recognition, local-
ization and detection using convolutional networks.” arXiv preprint
arXiv:1312.6229 (2013).

[17] Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). “Speeded-
up robust features (SURF).” Computer vision and image understanding,
110(3), 346-359.

[18] Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011, November).
“BRISK: Binary robust invariant scalable keypoints.” In 2011 Interna-
tional conference on computer vision (pp. 2548-2555). IEEE.

[19] Alahi, A., Ortiz, R., & Vandergheynst, P. (2012, June). “Freak: Fast
retina keypoint.” In Computer vision and pattern recognition (CVPR),
2012 IEEE conference on (pp. 510-517). IEEE.

[20] Erhan, Dumitru, et al. ”Why does unsupervised pre-training help deep
learning?.” Journal of Machine Learning Research 11.Feb (2010): 625-
660.

[21] Geiger, Andreas, Julius Ziegler, and Christoph Stiller. ”Stereoscan:
Dense 3d reconstruction in real-time.” Intelligent Vehicles Symposium
(IV), 2011 IEEE. IEEE, 2011.

[22] Geiger, Andreas, Martin Roser, and Raquel Urtasun. ”Efficient large-
scale stereo matching.” Asian conference on computer vision. Springer
Berlin Heidelberg, 2010.

[23] Geiger, A., Lenz, P., Stiller, C., Urtasun, R. (2013). ”Vision meets
robotics: The KITTI dataset” The International Journal of Robotics
Research, 0278364913491297.

[24] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009, June).
”Imagenet: A large-scale hierarchical image database” In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on (pp. 248-255). IEEE.

[25] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ”Imagenet classifi-
cation with deep convolutional neural networks” In Advances in neural
information processing systems (pp. 1097-1105).

[26] Shantia, Amirhossein, et al. ”Indoor localization by denoising autoen-
coders and semi-supervised learning in 3D simulated environment.”
Neural Networks (IJCNN), 2015 International Joint Conference on.
IEEE, 2015.


