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Abstract. The established procedure to train classification neural net-
works has been to employ a softmax layer to classify an embedding into
given number of classes. The softmax function approximates boundaries
between classes as angular bisectors in N-dimensional space. Therefore,
there is huge variance in the embeddings of a given class. It is neces-
sary to eliminate this intra-class variation to confidently identify out-of-
distribution samples while employing a classification network in the real
world. Additionally, eliminating intra-class variance might lead to perfor-
mance gains in face recognition algorithms, as has been observed previ-
ously. In this project, we would explore novel ways of reducing intra-class
variance. Particularly, we propose to employ an adversarial network to
penalize intra-class variance thereby eliminating variation in the original
classification network.
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1 Introduction

Why should we care about intra-class variance? Deep classification networks
perform exceeding well on closed datasets. However, they are not designed to
function well in open sets. In open sets, it is possible to observe object classes
that have never been seen during training. For example, a classification network
trained on imagenet would never have seen what a goldfish looks like.

Classification networks confidently predict unseen objects to one of the N
known training classes. However, we want our network to identify them as out-
of-training distribution classes.

The current best approach to do this fits one-vs-all classifiers on the embed-
dings of the penultimate layer. A test image is predicted as out-of-distribution if
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it is rejected by all the one-vs-all classifiers. Obviously, the one-vs-allthese clas-
sifiers would perform better if the embeddings belonging to the same class are
compact and discriminative., i.e they have less intra class variance.

Much research has been conducted on both face identification and face verifi-
cation, with greater focus on the latter. Research on face identification has mostly
focused on using closed-set protocols, which assume that all probe images used
in evaluation contain identities of subjects that are enrolled in the gallery. Real
systems, however, where only a fraction of probe sample identities are enrolled
in the gallery, cannot make this closed-set assumption. Instead, they must assume
an open set of probe samples and be able to reject/ignore those that correspond
to unknown identities.

Another very relevant application is face recognition. Here, the subject identi-
ties of test images are not usually present in training data. The classifier networks
trained on face data sets are used as feature extractors. Features extracted from
a ‘probe’ or test image is then compared against a the features extracted from a
‘reference’ image to verify if a given pair of images belong to the same identity
or not. Again, it is imperative that features belonging to the same identity are as
should be close to each other.

That is, a feature of an identity should be most similar to features of the same
identity irrespective of latent factors like pose, illumination, and expression.

Fig. 1: The figure above shows a general pipeline for a face verification system
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Fig. 2: The figure above shows distinct class embeddings

2 Related work

The necessity for open-set face recognition has been widely acknowledged for
over a decade [9]. However, only a few works such as, e.g., [15] [3] [5] [7] [6]
[11] have addressed the problem by predominantly focusing on obtaining an ad
hoc rejection threshold on similarity score under an openset evaluation protocol
[9]. For example, Best-Rowden et al. [6] showed that a simple thresholding of a
commercial of the shelf (COTS) algorithm works perfectly for verification, but
does not provide decent open-set identification performance. The development
of classifiers that explicitly model probability of inclusion [2] of probe samples
with respect to a region of known support of the gallery has received far less
attention in the face recognition community. For security-oriented applications
where the enrollment process must be quick, the cost of false alarms is high, and
the cost of missed alarms is even higher, the notion of using an ad hoc rejec-
tion threshold on similarity is problematic because the concept of unknown may
change as more samples are enrolled and data bandwidth is variable, so a one size
fits all threshold may not work well. A classifier that can efficiently be retrained
with each enrolled gallery template to autonomously assess the probability that
probe data comes from regions of known support on behalf of the gallery while
considering variable data bandwidths is a far more appealing alternative.

Thus, the motivation for applying classifiers that are open-set-by-design to
face recognition problems is manifested. Several such classifiers have been de-
veloped in the computer vision community [2] [12] [13] [1], but their application
has been limited to toy problems on modifications of canonical computer vision
datasets like MNIST [14], or to generic object recognition problems like the Im-
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ageNet challenge [10]. However, object recognition problems inherently differ
from biometric applications insofar as they are far more coarse-grained, the no-
tion of enrollment does not exist, and deep learning solutions can be obtained
by training an end-to-end network on the training set and using that end-to-end
network as a classifier.

Face identification systems that use deep features [8] [16] [17] [4], by con-
trast, use truncated forward passes over pre-trained networks to extract features
at enrollment or query time. The networks are trained in an end-to-end manner
on labeled face identities, which generally differ from the identities enrolled into
gallery templates. Templates are constructed during enrollment, e.g., by collect-
ing extracted feature vectors from several images of each given subject. At query
time, probe templates consisting of one or more extracted feature vectors of one
subject, are matched against gallery templates. The identification procedure com-
monly takes the form of finding the gallery template with the sample of maximum
similarity to the corresponding probe. Cosine is a common measure of similarity
between feature vectors extracted from a face network [16] [4]. Particularly, when
templates vary in number of images, feature vectors are sometimes aggregated
for a given identity prior to matching, e.g., by taking the mean feature vector [8]
[4].

3 Method

Most classification networks used for classification use categorical class entropy
is used as a supervisory signal. This is sufficient to perform well in normal clas-
sification settings like object or action classification, as all possible testing exam-
ples are present in the training set. However, for open set problems like face recog-
nition, it is not possible to have all testing examples in the training set. Therefore
features used for face recognition need to be discriminative and not just separable
[18]. Being discriminative ensures that predicting a label with nearest neighbors
still outputs a reasonable solution for any target example. Several methods have
been proposed to achieve such discriminative features. Two such methods are
contrastive loss and triplet loss. In both these approaches the number of possi-
ble training examples rises exponentially. One needs to find suitable sampling
schemes to sample training example pairs or triplets to ensure fast convergence.
An unideal scheme might lead to less than optimal performance.
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Fig. 3: The figure shows the distribution of deep features learned under the joint
supervision of categorical cross-entropy and center loss. The different colors rep-
resent examples drawn from different classes. λ denotes the weight of the weight
of the center loss in the overall loss function given in equation shown below on
page 6. The various ci’s represent the centers of the various classes.

3.1 Center loss

An efficient way to ensure that the deep features are discriminative and gener-
alizable to open set settings is to use center loss. In this method, the authors
proposed to learn a center (or mean) for each class and penalize the euclidean
distance between this mean and a training example from the same class.

Lc =
1

2

m∑
i=1

‖xi − cyi
‖22 (1)

where, cyi
is the yith class centers which need to be updated after every iteration.

This is inefficient. As a workaround, the authors proposed to update the class
centers with the mini-batch of sampled training examples weighted by a constant
α. The update operation is shown in the following equation.
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The center loss is efficiently contracts the distance between deep features of
the same class. To maximize inter-class separation, center loss is combined with
the normal softmax + categorical cross entropy loss, as shown in the above equa-
tion. By training on both these losses jointly, the discriminability of deep features
is greatly enhanced as shown in Figure 6.

3.2 A study in softmax

Another method to reduce intra-class variance is to modify the softmax layer to
restrict the space occupied by embeddings of the same class. We describe the
effect of various modifications to softmax in this section.

Softmax: A normal softmax function which classifies a given embedding
into one of N classes. Its operation can be described by the following equation,

pi =
exp(WT

i x+ bi)∑N
j=1 exp(W

T
j x+ bj)

(2)

Consider a softmax designed for binary classification. An input is classifier into
class 1 if p1 > p2 and vice-versa. From Equation 4, we observe that WT

1 x +
b1 and WT

2 x + b2 determine this decision. We can rewrite these expressions
as ‖W1‖‖x‖cos(θ1) + b1 and ‖W2‖‖x‖cos(θ2) + b2. The decision boundary
between these expressions is dependent on the magnitude of ‖Wi‖. Therefore,
it might cause overlap between embeddings of neighboring classes as seen in
Figure 7. Modified softmax: By normalizing the weights and zeroing the biases,
we find that the decision boundary is converted to the angular bisector ofW1 and
W2. This ensures that there is no overlap between embeddings of adjacent classes



Title Suppressed Due to Excessive Length 7

Fig. 4: The figure shows the effect of various modifications of softmax function.
For this experiment, the authors designed a CNN which employs 2D embed-
dings to classify images on a subset of CASIA face dataset. Yellow dots repre-
sent one class and purple dots represent the other. It can be observed that the
features learned by normal softmax function, although separable, overlap with
embeddings of different class. The modified softmax loss function which has nor-
malized weights in the softmax layer generates embeddings which are discrim-
inable. The angular softmax function massively increases the angular margin of
the learned embeddings.

making them discriminable. The operation of such a modified softmax function
are given by the following equation.

pi =
exp(‖x‖cos(θi))∑N
j=1 exp(‖x‖cos(θj))

(3)

Angular softmax: Although the emebddings generated by training a clssification
network do not overlap with neighboring classes, it is imperative that we intro-
duce an angular margin between embeddings of neighboring classes to maximize
discriminability. Instead of including a new loss function to achieve this, the au-
thors proppose to modify the softmax function further to incorporate angular
margins. Consider an embedding x of an example from class 1, and θi be the
angle between x and Wi. Modified softmax requires that cos(θi) > cos(θj)∀j.
Modifying this condition to cos(mθi) > cos(θj)∀j with m >= 2 results in
a stricter decision boundary because a lower bound value of cos(θi) should be
the greatest. From an angular perspective, correctly classifying x into class 1 re-
quires θ1 < θ2/m. This is a stricter condition. The operation of such a softmax
function is given by,

pi =
exp(‖x‖cos(mθi))∑N

j=1,j 6=i exp(‖x‖cos(θj)) + exp(‖x‖cos(mθi))
(4)

Such modification is more helpful than center loss because the general practice
to find nearest neighbors is to find the nearest neighbors on the basis of angu-
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Fig. 5: An illustration of embeddings generated by center loss vs angular soft-
max.The compactness of embeddings generated by angular softmax is more rel-
evant because of the general practice of identifying nearest neighbors on teh basis
of angular distance.

lar difference. The difference between embeddings generated by center loss and
angular softmax is shown in Figure 5.

Our method: Contrary to these methods, we devised a training scheme for
classification networks which employs adversarial losses to eliminate intra-class
variance. The classifier network (C) generates an embedding which is input to
an adversarial network (A). The adversarial network tries to distinguish between
embeddings of images of the same identity. If it is successful, we penalize the
original classifier network by a loss proportional to difference in predicted prob-
abilities, which is the adversarial loss. Similar to center loss, we train such clas-
sification networks jointly with both softmax and adversarial losses to maximize
inter-class separability while minimizing intra-class variance.

How do we implement this? The original classifier network takes an image
as input and generates an embedding. The embedding is passed through a softmax
layer to be predicted into one of N classes, and categorical cross-entropy is used
as one component of our loss function. The embedding generated by the classifier
is then input to an adversarial network which classifies this embedding into one
of 2N classes. The first N classes are formed by N anchor images, one from each
training class. We want the network to overfit to these anchor images. The next
N classes are composed of images other than the anchor image for each of N
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classes. The probabilities output by the adversarial network on an input are given
by,

padv = A(C(X)) (5)

where A is the adversarial network, C is the original classification network, and
X is the input example. C(X) is the embedding generated by the classification
network. Now, the probability of class i of 2N classes in the adversarial network
is given by padv(i).

The classifier trained on the normal softmax loss, as given by 6. It is also
penalized if the adversarial network is able to accurately identify if a given image
is not the anchor image. The penalty is proportional to the difference in predicted
probabilities of the non-anchor class and the anchor class, as given by Equation
7. The joint loss is a weighted combination of both these losses, as shown in
Equation 8.

Lsoftmax = −
N∑
i=1

log
exp(WT

i A(X) + bi)∑N
j=1 exp(W

T
j A(X) + bj)

(6)

Ladv = padv(2i)− padv(i) (7)

L = Lsoftmax + λ(Ladv) (8)

Notice that the adversarial loss would be minimum when the predicted probabil-
ity for the anchor class (2i) is 1, and the probability of the non-anchor class is
0. That is, we want the embedding of a non-anchor image to be so close to the
embedding of an anchor image that they are not distinguishable by an adversarial
network which is overfit to the anchor images. As all embeddings are now close
to the anchor embedding, transitivity implies they are close to each other.

4 Implementation details

One can observe that this architecture is very similar to Generative Adversarial
Networks. As all GANs, training this network is hard. It is harder because there
are 2*N classes for the adversary rather than the traditional real/fake classes. The
major issue is that each update of the classified causes a drift in the embedding of
the anchors. If the adversary network does not immediately adapt to this change,
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Fig. 6: The figure illustrates our training scheme. One image of each identity
in the training dataset is randomly chosen an ‘anchor image’. All other images
are ‘non-anchor images’. The classification network is trained with categorical-
crossentropy loss to distinguish between images of different classes. The adver-
sarial network is trained to take the embeddings generated by the classification
network and classify them into one of 2N classes. The ith class in first N classes
is composed of an anchor image. The i + N th class is composed of all other
images of the same identity as the anchor image in ith class. The classification
network is also trained to minimize the adversarial loss given by the difference
of probabilities output by the adversarial network for the i + N th class and ith
class ∀i respectively.

it will never be able to accurately distinguish between anchor and non-anchor
images. Also, as the classifier is penalized for any difference between their em-
beddings, it breaks down and outputs similar embeddings for images across all
classes.

We circumvent this issue with an innovative sampling scheme. In order to
make sure that the discriminator adjusts to the most recent update for the clas-
sifier weights, it is important that the same batch of anchor images are used for
classification in the discriminator. Thus, for two consecutive parameter update
steps of the embedding generator and the embedding discriminator it is important
to fix the anchor images but we can randomly sample the non anchor images. For
instance, in our case, given a batch size of 512, we randomly sample with replace-
ment 256 identities out of total N identities. First we sample the anchor image of
each of the sampled 256 identities. Then we sample one non-anchor image from
them. The batch to train the classifier is composed of the sampled anchor and
non-anchor images from the 256 identities. And immediately after the classifier
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is updated with this batch, the adversary is updated with a batch composed of the
same set of anchor images and a different set of non-anchor images. This ensures
that the adversary is in-step with the classifier. Also, batch sampling procedure
is more efficient as we reuse half of the images from the classifier batch to train
the adversary.

5 Results

In this section we show some qualitative results demonstrating the impact of our
training scheme. The three columns show 2D embeddings output by a CNN try-
ing to classify between 2, 3, and 8 classes respectively. The top row illustrates the
2D embeddings output by a vanilla classifier trained with softmax and categor-
ical cross-entropy. Similarly, the bottom row depicts embeddings generated by
our model for the same set of images. It is important to note that all these embed-
dings are directly taken from the classifier without any form of dimensionality
reduction (like PCA or t-SNE), which is why we make the embedding space of
the classifier a 2D vector space.

Fig. 7: An illustration of embeddings generated by vanilla classifier with cross
entropy loss.

In figure 7 we see the 2D embeddings from the vanilla classifier. Embeddings
belonging to the same identity are shown in the same colour. The variance along
the second principal component of the clusters denotes the intra class variance.
However, the variance along the first principal component is not as significant
since we normalize the embedding space before passing it into the softmax layer.
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The normalisation is done because we often use the inverse of the cosine distance
as a similarity metric for comparing embeddings.

Fig. 8: An illustration of embeddings generated by our novel loss function. We
can observe that our classification network learns to output embeddings with
reduced intra-class variance.

In figure 8 one would clearly observe that the intra-class variance has effec-
tively been eliminated. This can be concluded from the fact that the variance
along the second principal component of the individual clusters have been re-
duced significantly. Thus, our model represents a class with a single direction.
Note that since these embeddings are normalized before being input to the soft-
max layer, they get projected on to the surface of a sphere, where the embeddings
belonging to the same cluster (denoted by the same colour) clump together more
densely resulting in increased compactness. This shows that our model generates
discriminative embeddings with little intra-class variance.

6 Conclusion

In this report, we show a simple yet effective method of reducing intra class vari-
ance for embeddings belonging to the same identity. As mentioned earlier, our
goal is to be able to generalise well for out of distribution classes which is often a
challenge for face recognition tasks. We show that adding a novel adverserial loss
and an effective batch sampling strategy can simultaneously minimize intra-class
distance and maximize inter-class distance. The results we obtain are in sync with
our theoretical establishments.
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