Multi-Goal Reinforcement Learning with Conditional
Variational Autoencoders

Maximilian Sieb, Hariank Muthakana, Satyaki Chakraborty *

1 Introduction

Multi-goal and multi-task reinforcement learning are interesting topics that have gotten a lot of
attention lately. Given an environment and a goal, how do we transfer knowledge and policies
to another goal or another task? In this work, we investigate multi-goal/multi-task learning using
variational autoencoders (VAEs). We work in the MuJoCo environment, which has high-dimensional
state-space representation as well as complex goals and tasks.

We will give an overview of related approaches and environments. Then, we will formally introduce
the definitions of goals and tasks in the field of reinforcement learning, followed by an extensive
description of our proposed method to tackle multi-task and multi-goal learning effectively. More
specifically, we will augment off-policy RL algorithms with conditional variational autoencoders
(CVAEj5) to learn a policy representation that can capture the different modalities of a multi-goal task,
possibly extending it across different tasks as well. Finally, we compare the knowledge transfer with
and without the added autoencoder.

2 Background

2.1 Hindsight Experience Replay

Hindsight Experience Replay (HER) [1] is a method that allows off-policy RL algorithms to learn
from sparse rewards in a sample-efficient way. The key idea is to learn from failed episodes by
treating the final state reached as a new "goal". The trajectory and state reached are added into the
replay buffer and later when we replay, an algorithm like DDPG [7] can learn from trajectories with a
variety of goals. With HER, the reward function does not need to be manually shaped with domain
knowledge of the environment, and can simply be a binary signal of whether the goal was reached
or not. Because of how it encourages generalization, this technique lends itself well to multi-goal
learning and even improves single-goal performance.

2.2 Multi-Task & Multi-Goal RL

For a fruitful discussion and investigation of multi-goal and multi-task reinforcement learning, the
terms goal and task have to be appropriately defined. In this work, we define a goal g as a mapping
from states to {0, 1}, indicating whether the goal has been reached or not. This definition is analogous
to the definition laid out in [1]. A goal can be more practically defined as a different goal setting
within the same dynamical environment, i.e. the state-space representation and its dimension as
well as all other domain-specific parameters are equal except for explicit goal-dependent rewards
and termination of an episode. Multi-goal reinforcement learning can be formalized by introducing
another parameter g into the system, thus making the policy not only state, but also goal dependent.
Therefore, we learn one unified stochastic policy 7(s, g) to account for different goals instead of
learning one policy for each goal separately [12].

*msieb@cs.cmu.edu, hmuthaka@cs.cmu.edu, schakral @cs.cmu.edu

(2016).

As a task w, we define in this work a setting that is "similar" in the sense that the actor has the same
capabilities across all tasks, but the environment dynamics and the interactions with the environment
are different. For example, consider a robotic hand trying to hold a die and turn it such that the side
with the number six points upwards. Another goal would be to turn it such that the number three
faces upwards, whereas a different rask would be to have a spherical object with a set of number
printed on top of it and turning it such that a number faces upwards.Multi-task reinforcement can be
formalized by using the same reasoning as for multi-goal RL. Generally policies 7, q) are learned
for each task separately, or unified into a single policy 7 (s, g). This process of unifying multiple
policies into one unifying is known as policy distillation [17, 1 1].

3 Methods

We will investigate the use of Variational Autoencoders (VAEs) [6] to encode stochastic policies
conditioned on other inputs. This Conditional Variational Autoencoder (CVAE) [15] would then
output an action distribution conditioned on different goals and states in analogy to learning separate
policy networks for each goal. We can learn goal-dependent CVAEs and fuse them (either in parallel
during the individual learning process or after finishing the independent learning) to one unified
CVAE that is conditioned on the current goal and state to output an action distribution for that
state and goal. Alternatively, we could directly maintain one single CVAE model that consistently
incorporates more training data across different runs with different goal settings. In this work, we
will investigate the second case, since maintaining one single model allows for learning a unified
representation straight from the data instead of adding another complexity layer to fuse independent
CVAEs. For an overview of the proposed architecture, refer to figure 1.

Policy learning for different goals Policy learning for different goals
with HER + model free learner | with additional CVAE guidance

CVAE

/ .
¥ /" Inference

Training

Figure 1: Policy learning with CVAE guidance

Given several goal-dependent policies 74(a|s), we formally define the "true" action distribution of
the current task as p(a). This is analogous to the "evidence" in other settings. We extend this model
by considering a Conditional Variational Autoencoder (CVAE) to be able to condition the action
distribution on a given input, which in our case would be the states and/or goal. Overall, we are
looking to approximate the distribution p(a|(s, g)). Introducing the latent variable z, we have an
encoder go(z|a, (s, g)) and a decoder p,(alz, (s, g)) and we can define the CVAE reconstruction loss
like in [15] as

L0, 0) = —Ego(zla(s.9)) 108 Pe(alz, (s, 9))] + K L(go(2]a, (s, 9)lIpo(2](s,9)))

where (a, $) ~ 7 and 7 is the currently evaluated trajectory produced by the policy learner network.

How do we generate data for the CVAE? Overall, the goal is to model the underlying data distribution
of the actions relevant to the task at hand. For that reason, we run any (continuous) policy learning
algorithm such as DDPG on the task and use the action data generated through the policy learner
to train the CVAE. Ideally, we only take samples from successful runs in order to learn an action

distribution that is representative of "successful" actions and not just random actions, analogous to
feeding "real" images into a VAE in an image setting and not just noise. In a one-goal setting, one
would use a variety of different runs and setups that solve a task successfully and then train the CVAE
with that data.

In a sparse-reward environment, we want to see how using Hindsight Experience Replay can help the
CVAE learn more efficiently by introducing substitute goals to additionally get valuable training data
from non-successful runs that are in itself "successful” with respect to the substitute goal. To do so,
we not only condition the VAE on the state, but also on the current goal. For the current substitute
goal, we just learned a successful policy and we can train the CVAE on that one. The hope is that
after a certain amount of training, the CVAE will learn a latent representation that can aid the policy
learner towards reaching the actual goal quicker by providing guidance on the variance and value
of actions in the current state and given the current goal, trained on experience from previous runs.
Assuming the CVAE is trained on a couple of different goals, we can now start to enhance the main
policy learner (e.g. DDPG + HER). To do so, we generate enough samples from the conditional
distribution py(als, g) to calculate the sample variance. We can now enhance the local exploration
rate of the learner; if the CVAE predicts high variance at that state, the learner should explore more
and vice versa. This yields an enhanced exploration tactic instead of solely being based on, for
example, a simple decaying e-greedy policy.

A more structured approach would include to impose an additional loss term on the policy learner: If
we are using a stochastic policy such as TRPO, we can enforce an additional loss term via

Lsim(Oactor) = KL(WQ(G‘S)HPB(‘IKS’ g)))

to guide the action selection of the learner to be more similar to the distribution of the CVAE at that
state (and goal).

Even in a setup where we use non-stochastic policies such as DDPG, we can usually treat them as
stochastic policies since they are often implementing some kind of exploration noise on top of the
deterministic output. Defining the explorative policy as 74 (als) = pg(s) + €, where f14(s) is the
deterministic goal-dependent state-to-action mapping of any deterministic policy learner and € is any
stochastic noise distribution, we can introduce the same loss as defined before via

Lsim(Oactor) = KL(7y(als)||po(al(s, 9)))

For any policy learning algorithm, the combined loss of the actor-network would then be a combina-
tion of the original actor loss and the CVAE imposed loss:

Etotal(eactor) = Em’iginal + Ofﬁsim

Keeping in mind that the analysis so far was restricted to sparse environment or dense environments
with an implicit notion of a goal to evaluate "success", we also want to investigate how we can
use Importance Weighted Autoencoders IWAE) to incorporate reward feedback in dense-reward
environments to train the CVAE through continous reward feedback regardless of the actual episodic
success.

If time permits, the next investigative step would be to train multiple one-task goal-conditioned
CVAE:s for separate tasks w and then fuse them to one unified task- and goal-dependent CVAE or an
ensemble of CVAEs. Since the representation/dimensionality of the goal is dependent on the task
now, we require an intermediate feature transformation.

4 Dataset

We will mainly evaluate our approach using the Robotics environment from OpenAl that implements
the MuJoCo physics simulator. More specifically, we will evaluate on the Fetch and the ShadowHand
environment. Regarding the metrics to be evaluated, we will compare how long it takes the agent to
successfully reach the specified goal configuration in the given environment. We will then investigate
if the learner improves if given a different goal if it receives additional guidance from the trained
CVAE compared to the vanilla implementation of HER and a model-free policy learning method.

As mentioned above, if time permits, we will further investigate if the CVAE helps across environ-
ments that are similar, for example trying to manipulate an egg after learning how to manipulate a
cube with the ShadowHand.

5 Preliminary Results

We first evaluate baseline methods for multi-goal learning, namely HER + DDPG, trained on the
FetchReach and FetchPickAndPlace environments with sparse rewards and randomized goal setting
for each run. For each environment, we compare the success rate when training from a randomly
initialized policy versus training from the best policy found from all previous runs (for different
goals). In this case, we trained policies on 5 different goal settings, always keeping the best policy
that has been trained throughout the entire experiment. For the final results, we ran the same setting 3
times and then report the average results to account for random seeds. The results are summarized in
Figures 2-5.

Generally, it is evident that "pretraining” on different goals does not seem to aid performance in a
multi-goal setting. That is exactly what we hope can be improved upon by using a CVAE to transfer
"knowledge" across multiple goals more effectively. Nonetheless, we are going to conduct more
runs to pretrain the vanilla HER + DDPG policies more extensively on multiple goals to see if more
longer-term training would induce some kind of transfer learning.

Additionally, we plan on conducting more baseline experiments with the HandManipulateBlock and
HandManipulateEgg enviroments - however, [1] used 19 CPUs to parallelize the training for these
environments to reach an adequately high success rate after 200 epochs. Until now, we did not have
the computational resources to conduct these types of experiments.

FetchPickAndPlace-v0 FetchPickAndPlace-v0

1.0 —— her-sparse —— her-sparse
0.8
0.6
0.4

0.2

Median Success Rate
Median Success Rate

00 0.0

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 2: FetchPickAndPlace, HER+DDPG, Figure 3: FetchPickAndPlace, HER+DDPG,
random initialization best previous policy

FetchReach-v0 FetchReach-v0

— her-sparse — hersparse

10
. /_/_/

Median Success Rate
Median Success Rate

0 10 20 30 40 0 5 10 15 20 25 30
Epoch Epoch

Figure 4: FetchReach, HER+DDPG, random Figure 5: FetchReach, HER+DDPG, best pre-
initialization vious policy

References

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay.
2017.

[2] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages 17-36, 2012.

[3] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
Conquer Reinforcement Learning. pages 1-11, 2017.

[4] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep Reinforcement Learning that Matters. 2017.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[6] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. (Ml):1-14, 2013.

[7] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
2015.

[8] David Pardoe and Peter Stone. Boosting for regression transfer. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 863—870.
Omnipress, 2010.

[9] Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. Actor-Mimic Deep Multitask and
Transfer Reinforcement Learning. pages 1-16, 2016.

[10] Paulo Rauber, Filipe Mutz, and Juergen Schmidhuber. Hindsight policy gradients. 2017.

[11] Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
Distillation. pages 1-13, 2015.

[12] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function
Approximators. Proceedings of The 32nd International Conference on Machine Learning,
pages 1312-1320, 2015.

[13] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence Between Policy Gradients and Soft
Q-Learning. pages 1-15, 2017.

[14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic Policy Gradient Algorithms. Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 387-395, 2014.

[15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output Representation using
Deep Conditional Generative Models. Advances in Neural Information Processing Systems,
pages 3483-3491, 2015.

[16] Matthew E Taylor and Peter Stone. An introduction to intertask transfer for reinforcement
learning. Ai Magazine, 32(1):15, 2011.

[17] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick,
Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust Multitask Reinforcement
Learning. 2017.

[18] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, pages 3320-3328,
2014.

	Introduction
	Background
	Hindsight Experience Replay
	Multi-Task & Multi-Goal RL

	Methods
	Dataset
	Preliminary Results

